Study Materials: ncert solutions

Our ncert solutions for Solutions 7. Integrals - Exercise 7.1 | Class 12 Mathematics-II - Toppers Study is the best material for English Medium students cbse board and other state boards students.

Solutions ⇒ Class 12th ⇒ Mathematics-II ⇒ 7. Integrals

Solutions 7. Integrals - Exercise 7.1 | Class 12 Mathematics-II - Toppers Study

Topper Study classes prepares ncert solutions on practical base problems and comes out with the best result that helps the students and teachers as well as tutors and so many ecademic coaching classes that they need in practical life. Our ncert solutions for Solutions 7. Integrals - Exercise 7.1 | Class 12 Mathematics-II - Toppers Study is the best material for English Medium students cbse board and other state boards students.

Solutions 7. Integrals - Exercise 7.1 | Class 12 Mathematics-II - Toppers Study

CBSE board students who preparing for class 12 ncert solutions maths and Mathematics-II solved exercise chapter 7. Integrals available and this helps in upcoming exams 2024-2025.

You can Find Mathematics-II solution Class 12 Chapter 7. Integrals

  • All Chapter review quick revision notes for chapter 7. Integrals Class 12
  • NCERT Solutions And Textual questions Answers Class 12 Mathematics-II
  • Extra NCERT Book questions Answers Class 12 Mathematics-II
  • Importatnt key points with additional Assignment and questions bank solved.

Chapter 7 Mathematics-II class 12

Exercise 7.1 class 12 Mathematics-II Chapter 7. Integrals

Sure! The following topics will be covered in this article

  • Solutions 7. Integrals - Exercise 7.1 | Class 12 Mathematics-II - Toppers Study
  • Class 12 Ncert Solutions
  • Solution Chapter 7. Integrals Class 12
  • Solutions Class 12
  • Chapter 7. Integrals Exercise 7.1 Class 12

  • Notice: Undefined offset: 5 in /home/atpeduca/public_html/toppersstudy.com/view-home.php on line 123

7. Integrals

| Exercise 7.1 |

Solutions 7. Integrals - Exercise 7.1 | Class 12 Mathematics-II - Toppers Study


Exersise 7.1

Find an antiderivative (or integral) of the following functions by the method of inspection 

Ques.1.  

Ans. 

 

  An anti-derivative of  is 

Ques.2. 

Ans. 

 

  An anti-derivative of  is 

Ques.3.  

Ans.  

 

 

 An anti-derivative of  is 

Ques4.  

Ans.  

 

 

 An anti-derivative of  is 

Ques.5.  

Ans. 

  …..(i)

Again 

 

  [Multiplying both sides by ] ……….(ii)

Adding eq. (i) and (ii), we get

 

 

 An anti-derivative of  is 

Ques.6.   

Ans. 

 

Ques.7. 

Ans.  =  =  = 

 

Ques.8.  

Ans. 

 where  is the constant of integration.

Ques.9.  

Ans. 

Ques.10. 

Ans. 

 

Ques11.  

Ans. 

Ques.12. 

Ans. 

Ques.13. 

Ans. 

Ques14.  

Ans. 

 = 

Ques.15.  

Ans. 

Ques16.  

Ans. 

Ques.17.  

Ans. 

Ques.18.  

Ans. 

Ques.19.  

Ans. 

Ques.20.   

Ans. 

Ques.21. Choose the correct answer:

The anti derivative of  equals.

(A)  

(B) 

(C) 

(D) 

Ans. 

hance, option (C) is correct.

Ques.22. Choose the correct answer:

If  such that  Then  is:

(A)  

(B) 

(C) 

(D) 

Ans. 

   ……….(i)

 

 

 

 

Putting  in eq. (i),

hance, option (A) is correct.

Select Your CBSE Classes

Important Study materials for classes 06, 07, 08,09,10, 11 and 12. Like CBSE Notes, Notes for Science, Notes for maths, Notes for Social Science, Notes for Accountancy, Notes for Economics, Notes for political Science, Noes for History, Notes For Bussiness Study, Physical Educations, Sample Papers, Test Papers, Mock Test Papers, Support Materials and Books.