Study Materials: ncert solutions

Our ncert solutions for Solutions 4. Determinants - Exercise 4.5 | Class 12 Mathematics-I - Toppers Study is the best material for English Medium students cbse board and other state boards students.

Solutions ⇒ Class 12th ⇒ Mathematics-I ⇒ 4. Determinants

Solutions 4. Determinants - Exercise 4.5 | Class 12 Mathematics-I - Toppers Study

Topper Study classes prepares ncert solutions on practical base problems and comes out with the best result that helps the students and teachers as well as tutors and so many ecademic coaching classes that they need in practical life. Our ncert solutions for Solutions 4. Determinants - Exercise 4.5 | Class 12 Mathematics-I - Toppers Study is the best material for English Medium students cbse board and other state boards students.

Solutions 4. Determinants - Exercise 4.5 | Class 12 Mathematics-I - Toppers Study

CBSE board students who preparing for class 12 ncert solutions maths and Mathematics-I solved exercise chapter 4. Determinants available and this helps in upcoming exams 2024-2025.

You can Find Mathematics-I solution Class 12 Chapter 4. Determinants

  • All Chapter review quick revision notes for chapter 4. Determinants Class 12
  • NCERT Solutions And Textual questions Answers Class 12 Mathematics-I
  • Extra NCERT Book questions Answers Class 12 Mathematics-I
  • Importatnt key points with additional Assignment and questions bank solved.

Chapter 4 Mathematics-I class 12

Exercise 4.5 class 12 Mathematics-I Chapter 4. Determinants

Sure! The following topics will be covered in this article

  • Solutions 4. Determinants - Exercise 4.5 | Class 12 Mathematics-I - Toppers Study
  • Class 12 Ncert Solutions
  • Solution Chapter 4. Determinants Class 12
  • Solutions Class 12
  • Chapter 4. Determinants Exercise 4.5 Class 12

  • Notice: Undefined offset: 5 in /home/atpeduca/public_html/toppersstudy.com/view-home.php on line 123

4. Determinants

| Exercise 4.5 |

Solutions 4. Determinants - Exercise 4.5 | Class 12 Mathematics-I - Toppers Study


 

Exercise 4.5

Find adjoint of each of the matrices in Exercise 1 and 2.

Ques.1.  

Ans. Here A = 

 

 A11 = Cofactor of 

A12 = Cofactor of 

A21 = Cofactor of 

A22 = Cofactor of 

 adj. A =  = 

 

 

Ques.2.  

Ans. Here A = 

 

      = 

 

 

 

 adj. A = 

 

Verify A (adj. A) =  in Exercise 3 and 4.

Ques.3.  

AnsLet A = 

 adj. A = 

 A.(adj. A) = 

 =   …..(i)

Again  (adj. A). A = 

 =     …..(ii)

And  = 

Again      …..(iii)

 From eq. (i), (ii) and (iii) 

A. (adj. A) = (adj. A). A = 

 

 

 

Ques.4.  

Ans. Let A = 

   

    = 

  

  

   

 adj. A = 

 A. (adj. A) = 

 = 

 ……….(i)

Again  (adj. A). A = 

  ……….(ii)

And 

Also  =     ……….(iii)

 From eq. (i), (ii) and (iii)  A. (adj. A) = (adj. A). A = 

 

Find the inverse of the matrix (if it exists) given in Exercise 5 to 11.

Ques.5.  

Ans. Let A = 

  =  0

 Matrix A is non-singular and hence  exist.

Now adj. A =  And 

 

 

Ques.6.  

Ans. Let A = 

  = 

 Matrix A is non-singular and hence  exist.

Now adj. A =  And 

 

 

Ques.7.  

Ans. Let A = 

  = 

  exists.

A11 = ,  A12 = ,

A13 = ,   A21 = ,

A22 = ,   A23 = ,

A31 = ,   A32 = ,

A33 = 

 adj. A = 

 

 

 

Ques.8.  

Ans. Let A = 

   = 

  exists.

A11 = , A12 = ,

A13 = , A21 = ,

A22 = , A23 = ,

A31 = ,   A32 = ,

A33 = 

 adj. A = 

 

 

 

Ques.9.  

Ans. Let A = 

  = 

  exists.

A11 = , A12 = ,

A13 = , A21 = ,

A22 = , A23 = ,

A31 = ,  A32 = ,

A33 = 

 adj. A = 

 

 

 

Ques.10.  

Ans. Let A = 

  

  exists.

A11 = ,  A12 = ,

A13 = , A21 = ,

A22 = , A23 = ,

A31 = , A32 = ,

A33 = 

 adj. A = 

 

 

 

Ques.11.  

Ans. Let A = 

 

  exists.

A11 = ,

A12 = , A13 = ,

A21 = ,   A22 = ,

A23 = ,  A31 = ,

A32 = , A33 = 

 adj. A = 

 

 

 

Ques.12. Let A =  and B =  verify that  

Ans. Given: Matrix A = 

  = 15 – 14 = 1  0

  = 

Matrix B = 

  = 54 – 56 =   0

 

Now AB =  =  = 

  = 

Now L.H.S. =     ……….(i)

R.H.S. = 

  ……….(ii)

 From eq. (i) and (ii), we get

L.H.S. = R.H.S.

 

 

 

Ques.13. If A = , show that A2 – 5A + 7I = 0. Hence find  

Ans. Given: A = 

  

 

L.H.S. = 

= R.H.S.

  ……(i)

To find: , multiplying eq. (i) by .

 

 

 

 = 

Ques.14. For the matrix A =  find numbers  and  such that  

Ans. Given: A = 

  

 

 

 

 

 

 We have  ……….(i)

 

 

Here  satisfies  also, so 

Putting  in eq. (i),        

Here also  satisfies  , so 

hance,  and 

 

 

Ques.15. For the matrix A = , show that  Hence find 

Ans. Given: A = 

 

  = 

Now 

L.H.S. = 

 =  = R.H.S.

Now,   to find , multiplying  by 

 

 

 

 

 

  = 

 

 

 

Ques.16. If A = , verify that  and hence find 

Ans. Given: A = 

 

  = 

Now 

L.H.S. = 

 =  = R.H.S.

Now,   to find , multiplying  by 

 

 

 

 

 

  = 

 

 

 

Ques.17. Let A be a non-singular matrix of order 3 x 3. Then  is equal to:

(A) 

(B)    

(C)    

(D)  

Ans. If A is a non-singular matrix of order  then 

 Putting  

hance, option (B) is correct.

 

 

Ques.18. If A is an invertible matrix of order 2, then det  is equal to:

(A) det A 

(B)    

(C) 1  

(D) 0

Ans. Since 

  

 

 

hance, option (B) is correct.

Select Your CBSE Classes

Important Study materials for classes 06, 07, 08,09,10, 11 and 12. Like CBSE Notes, Notes for Science, Notes for maths, Notes for Social Science, Notes for Accountancy, Notes for Economics, Notes for political Science, Noes for History, Notes For Bussiness Study, Physical Educations, Sample Papers, Test Papers, Mock Test Papers, Support Materials and Books.